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Aim of the Project 
The motivation for this study is to examine the nature of energy release processes in solar flares. 

McAteer et al (2007) showed that higher energy bands in RHESSI flare data exhibit more anti-

persistence, and are ‘burstier’ than lower energy bands in RHESSI. This suggests that electrons that 

are accelerated to higher energies are due to less correlated events in the reconnection region. One 

possible physical interpretation is that the reconnection region is composed of many different small 

reconnection regions, and that the higher energy electrons experience many more different 

reconnection/particle acceleration regions than lower energy electrons. 

 

The analysis of McAteer et al (2007) is partly based on the Hurst exponent H. This quantity 

measures the persistence in the data compared to that expected from a purely Gaussian-noisy time-

series. If 0.5<H<1, then the time-series is more correlated than Gaussian random noise, and is 

termed persistent. Conversely, if 0<H<0.5, the time-series is less correlated than Gaussian random 

noise, and is termed anti-persistence. 

 

The idea of studying the persistence of flare time-series is extended to look at pre- and post-flare 

emission to determine if there is a detectable difference in the pre- and post-flare persistence of the 

emission.  A difference between the pre- and post-flare persistence indicates differences in the long 

range time-dependence of the emission, which can be interpreted as indicating the presence of 

different mechanisms in the coronal plasma that cause differences in the behavior of LYRA time-

series pre- and post-flare.  Any significant differences may lead to the derivation of a flare pre-

cursor signal. 
 

All the code developed for this work can be found at https://github.com/wafels/PROBA2-GI-

Analysis.   

 

 

Data preparation 

 

This project takes advantage of pre-existing code packages already written in the R statistical 

language (http://www.r-project.org).  Therefore, LYRA data had to be available to made available 

to these packages.  This was achieved by reading the data into a SunPy (http://www.sunpy.org) 

session and then using the rpy2 package (http://rpy.sourceforge.net/rpy2.html) to pass data and 

results to and from concurrently running Python and R sessions. 

 

Python/SunPy was chosen as the principle data analysis environment since it provides easy to use 

interfaces to the HEK and to the R statistical package.  A considerable amount of time on the 

project was spent designing an object in SunPy that can be used to store and manipulate LYRA 

data.    It should be noted that the effort to include LYRA data in SunPy inspired several volunteer 

developers from outside the PROBA2 Guest Investigator community to contribute to the 

development of time-series data objects in SunPy.  The LYRA data object is now a subclass of the 

more general purpose SunPy time-series data object. 

 

The analysis proceeds as follows.  A range of dates is selected.  For each day in the range, the 

LYRA data is downloaded and the start and end times of all flares stored in the HEK is also 

obtained.  This allows us to segment the data into two sets of time-series, a set that contain time-

series, and a set that do not.  Spikes are detected in the non-flaring time-series and those data are 

excised. 

 

https://github.com/wafels/PROBA2-GI-Analysis
https://github.com/wafels/PROBA2-GI-Analysis
http://www.r-project.org/
http://www.sunpy.org/
http://rpy.sourceforge.net/rpy2.html


 

Dedicated Instrument Campaign 

No dedicated instrument campaigns were required for this work. 

 

Preliminary results and discussion 

 

LYRA data from 2012/06/08 to 2012/07/08 was downloaded from the PROBA2 datacenter.  Flare 

occurrence times over the same date range were obtained from the HEK.  The data was split as 

described above.  Only time-series of a duration of at least 10,000 observations (500 seconds) or 

more were analyzed.  Further, after a flare, the first 10,000 observations were analyzed, and before 

a flare, the 10,000 observations just before the flare were analyzed.  The rescaled range analysis 

method (Bassingthwaighte and Raymond, 1994;  Oliver and Ballester 1996) from the R package 

fArma (rsFit; see http://cran.r-project.org/web/packages/fArma/index.html) was used to fit the Hurst 

exponent.  As a comparison, results were also generated by replacing the LYRA data with Gaussian 

noise, and performing the same analysis.   LYRA data from channels 3 and 4 were analyzed.  The 

results are shown below. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Hurst (H) exponent results.  Plot legends give the number of time series of each type in 

brackets, an estimate of the mean Hurst exponent, and its standard deviation. 

 

 

The results show that the average Hurst exponents before and after a flare are indistinguishable 

from each other for both LYRA channels 3 (left plot) and 4 (middle plot) within one standard 

deviation. However, we also note a slightly higher Hurst exponent in the 'after flare' time-series 

compared to the 'before-flare' time-series in both channels.  A Kolmogorov-Smirnov test was also 

applied to each pair of distributions.  The test showed that the null hypothesis – that the two 

observed distributions are drawn from the same parent distribution – could not be rejected.  

 

The right-most plot shows the same analysis applied to Gaussian noise time-series with the same 

sampling as the LYRA channel 4 data. A purely Gaussian time-series has a Hurst exponent of 

H=0.5.  These results show a slight bias towards higher values of H. If we accept this bias as 

present in the analysis method, then the LYRA data-derived plots show evidence for weakly 

persistent time-series in LYRA channel 3 and 4 data.  Therefore pre- and post-flare LYRA time-

series are not simply pure, uncorrelated Gaussian noise but do exhibit some persistence. 



 

 

Future Work 

 

The present analysis can be extended simply by looking at more data.  Extending the sample size 

would improve our knowledge of any differences in the pre- and post-flare distributions of the 

Hurst exponent.  A study in which the Hurst exponent is measured in a sliding window leading up 

to a flare would be useful in the attempt to find detectable flare pre-cursors in LYRA data.  Further, 

categorizing these measurements by flare size would give an indication of a correlation between 

flare size and persistence.  

 

Much computational infrastructure has been created that can be used in the analysis of LYRA data 

in the future.  In particular, the splitting of LYRA data into flaring and non-flaring time-series based 

on HEK results is very useful.  For example, having split the original observational time-series into 

flaring and non-flaring time-series, it would be very simple to run a wavelet-based search and 

identification of quasi-periodic pulsations (QPPs; Foullon et al. 2005) in flaring plasma and compile 

an automatically generated survey of QPPs as observed by LYRA. 
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