PROBAII GI

Spiros Patsourakos
University of Ioannina, Greece
18-Aug-2011

Objective of GI

Observe EUV CMEs and waves above 0.5 Rs usin PROBA-II offpoints

EUV CME off-limb signal

- •How far can we observe an EUV CME?
- •Let a spherical shell with radius(\sim height) R and thickness $w: R \sim H$

- •Assume constant shell mass (nV=const; nwR^2); temperature~ const
- •*I_EUV~n^2*w*
- R/w=const; self-similar expansion --- Rw=const; pile-up
- • $I_EUV \sim R^{(-5)}$ — $R^{(-3)}$; obs more consistent w/ shallower fall-off
- • $R \rightarrow 0.2$ -0.6 Rs I_EUV would fall by a factor ~ 27 at minimum

SWAP CME off-limb signal

- 8 March-2011; M1.5 flare @ 03:37
- Bubble, EUV wave & deflections
- CME @ 800 km/s

SWAP CME off-limb signal

Bubble can be indirectly traced until the edge of the nominal FOV (propagating dimming); point&click problematic towards the FOV edge!

cuts across the CME bubble

Combine H-t from AIA & SWAP

AIA bubble exits very soon from the AIA FOV (left); SWAP adds 2-3 H-T measurements; important to compare the trailing flux rope in AIA 131 (middle) with the 171/174 bubble (=cavity)

August 8 2011 off-point

M-class flare

CME ~ 1000 km/s

EUV wave

EUV CME signature poor

See mostly its **impact** (EUV wave & deflections)

PFSS shows some long connections

Off-point Signal

edge of nominal FOV

Averaging 10-s exposures does not change the far-FOV intensity slope

Off-limb Deflections

- "Smoking-gun" of wave disturbances in the corona
- •Estimate on the height of the disturbances (for standing waves)
- •Coronal seismology → B-field

Analyzed structure; clean background

Off-limb Deflections

•Trace an off-limb structure → make time- perpendicular distance plot & fit a Gaussian + quadratic function for each vertical cut → cendroid = amplitude of oscillation

Fit a damped sine curve to time-amplitude → long period (~ 1 hr) of kink-like oscillation?

Period of kink-oscillation
$$P_{\text{kink}} = \frac{2L_{\text{osc}}}{c_k}$$

Coronal Implosions during Flares

•SWAP does not saturate! Can observe very close to flare core

Watch for the arrowed loop in SWAP movie; this loop gets "lost" in the diffraction of AIA

Off-limb Deflections

•Difficult to apply though such analysis to other structures which in a movie-mode seem to oscillate; small constrast & other structures in the background/foreground are limiting factors