

LYRA

the Large-Yield Radiometer onboard PROBA2

Multi-instrument observations of an X9.3 flare

I.E. Dammasch (ROB), M. Dominique (ROB), A.N. Zhukov (ROB), P. Heinzel (CAS), L. Wauters (ROB)

XVIth Hvar Astrophysical Colloquium Hvar, Croatia, 24-28 Sep 2018

Contents

- PROBA2 / LYRA: description
- Degradation problems
- Observations 06 Sep 2017
- Interpretation

PROBA2: PRoject for On-Board Autonomy

- ESA microsatellite in Sun-synchronous orbit, 725 km altitude
- Built in Belgium, commanded from ROB, launched 02 Nov 2009
- 17 technological experiments, 4 innovative instruments, for inorbit demonstration (combined technology and science mission)
- LYRA and SWAP have been observing the Sun in EUV, continuously since Jan 2010

LYRA: the Large-Yield RAdiometer

- 3 instrument units (redundancy)
- 4 spectral channels per head
- 3 types of detectors,
 Silicon + 2 types of
 diamond detectors (MSM, PIN):
 - radiation resistant
 - insensitive to visible light compared to Si detectors
- High cadence up to 100 Hz

SWAP and LYRA spectral intervals for solar flares, space weather, and aeronomy

LYRA channel 1: the H I 121.6 nm Lyman-alpha line (120-123 nm)

LYRA channel 2: the Herzberg continuum range (190-222 nm)

LYRA channel 3: the 17-80 nm Aluminium filter range (+ <5nm X-ray)

LYRA channel 4: the 6-20 nm Zirconium filter range (+ <2nm X-ray)

SWAP: the range around 17.4 nm including coronal lines like Fe IX and Fe X

LYRA spectral response

Contents

- PROBA2 / LYRA: description
- Degradation problems
- Observations 06 Sep 2017
- Interpretation

LYRA units and channels

	Ly	Hz	Al	Zr
Unit1	MSM	PIN	MSM	Si
Unit2	MSM	PIN	MSM	MSM
Unit3	Si	PIN	Si	Si

Redundancy: LYRA has one nominal unit and two spare units.

Unit 1 "calibration unit"

Unit 2 "nominal unit"

Unit 3 "campaign unit"

open several days since 2010

open permanently since 2010

open several weeks since 2010

Spectral degradation in space

EURECA / SOVA 1992-1993 (retrieved by Space Shuttle) PROBA2 / LYRA 2010-2012

UV-polymerization -> molecular contamination on first optical surface LYRA: initially no detector degradation

Degradation unit 2 ("nominal unit")

Probably caused by a mix of C and Si (100 nm and 5 nm, resp.) and maybe oxidation.

Remaining response:

<u>-</u>
<0.5%
<0.5%
1%
12%

Degradation unit 1 ("calibration unit")

Probably caused by 10 nm of C.

Remaining response:

ch1-1 (Ly) 65% ch1-2 (Hz) 64% ch1-3 (Al) 60% ch1-4 (Zr) 72%

Contents

- PROBA2 / LYRA: description
- Degradation problems
- Observations 06 Sep 2017
- Interpretation

2010 - 2018

After several months of relative quiet ...

2017

... a sudden increase of solar activity was observed ...

September 2017

... on 04 Sep 2017 when NOAA AR 12673 started to grow quickly ...

... producing
27 M-class and
4 X-class flares,
among them so far
the two strongest
of solar cycle 24.

X9.3 on 06 Sep 2017, 12:02 UTC X8.2 on 10 Sep 2017, 16:06 UTC

LYRA ch2-1, ch2-2: flat

Multi-instrument observations of X9.3: Flare hunting campaign incl. LYRA unit 1

first and only signature so far

Solar irradiances during X9.3, pre-flare levels subtracted

Contents

- PROBA2 / LYRA: description
- Degradation problems
- Observations 06 Sep 2017
- Interpretation

Spectral modeling

- Carbon contamination estimated (10 nm layer)
- Lyman-alpha channel corrected for out-of-band contributions
- i.e. ch1-1 (Ly) corrected by longer-wavelength ch1-2 (Hz)
- Flare spectrum estimated and multiplied by spectral response
- Resulting numbers (electron density at peak time) correspond to theoretical models and to similar studies

The other big flare (X8.2)

- Signatures in LYRA ch1-3 (Al), ch1-4 (Zr), and GOES
- No signatures in LYRA ch1-1 (Ly), ch1-2 (Hz)
- Flare behind limb
- Foot points occulted

Emission in LYRA channel 2

- The flare signal in LYRA channel 2 primarily comes from an increase of the H Balmer continuum.
- Emission is produced by an optically thin chromospheric layer of thickness L ~ 130 km.
- T = 10000 K
- Emitting surface estimated on SDO/HMI observations= 400 Mm2
- Results will be published soon:

Submitted to ApJL

Draft version August 7, 2018 Typeset using IATeX twocolumn style in AASTeX61

FIRST DETECTION OF SOLAR FLARE EMISSION IN MIDDLE-ULTRAVIOLET BALMER CONTINUUM

Marie Dominique, ^{1,2} Andrei N. Zhukov, ^{1,3} Petr Heinzel, ⁴ Ingolf E. Dammasch, ¹ Laurence Wauters, ¹ Laurent Dolla, ¹ Sergei Shestov, ^{1,5} Matthieu Kretzschmar, ⁶ Janet Machol, ⁷ Giovanni Lapenta, ² and Werner Schmutz⁸

(Received July 17, 2018)

Submitted to ApJL

ABSTRACT

We present the first detection of solar flare emission at middle-ultraviolet wavelengths around 2000 Å by the channel 2 of the Large-Yield RAdiometer (LYRA) onboard the PROBA2 mission. The flare (SOL20170906) was also observed in the channel 1 of LYRA centered at the H I Lyman-α line at 1216 Å, showing a clear non-thermal profile in both channels. The flare radiation in channel 2 is consistent with the hydrogen Balmer continuum emission produced by an optically thin chromospheric slab heated up to 10000 K. Simultaneous observations in channels 1 and 2 allow the B

¹ Solar-Terrestrial Centre of Excellence – SIDC, Royal Observatory of Belgium, 3 Avenue Circulaire, 1180 Uccle, Belgium

²Katholiek Universiteit Leuven (KUL), Celestijnenlaan 200b - bus 2400, 3001 Heverlee, Belgium

³Skobeltsyn Institute of Nuclear Physics, Moscow State University, Leninskie gory, GSP-1, Moscow, 119991, Russia

⁴Astronomical Institute, Czech Academy of Sciences, 25165 Ondřejov, Czech Republic

⁵Lebedev Physical Institute, Leninskii prospekt, 53, 119991, Moscow, Russia

⁶LPC2E, UMR 7328 Université d'Orléans and CNRS, 3a av. de la Recherche Scientifique 45071 Orléans Cedex 2, France

⁷NOAA/NCEI and University of Colorado/CIRES, 325 Broadway, Boulder, CO 80305, USA

⁸PMOD/WRC, Dorfstrasse 33, 7260 Davos Dorf, Switzerland