

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

A New Window into Thermospheric Variability Provided by PROBA2/LYRA Solar Occultations

Ed Thiemann, M. Dominique, M. Pilinski, F. Eparvier, M. West, and the LYRA Operations and Data Processing Teams

Planetary Science • Space Physics • Solar Influences • Atmospheric Science • Engineering • Mission Operations & Data Systems http://lasp.colorado.edu

Introduction

- The Earth's thermosphere ranges from ~120-500 km, and is the neutral component of the atmosphere that extends into the space environment.
 - It is highly structured, containing the coldest and hottest temperatures in Earth's atmosphere.
 - It is highly variable and sensitive to space weather.
- Thermospheric structure and variability have important consequences for satellite drag.
- The thermosphere has been historically difficult to measure, LYRA provides visibility into thermospheric variability over the past solar cycle.

Density From LYRA Solar Occultations

- Density retrievals are complicated by the spatial extent of the Sun being equal to ~2 scale heights.
- Retrieval integrates the solar disk over reference atmosphere to find column density.
- Additionally, EUV varies over the disk, so disk images need to be incorporated into the retrieval.
 - EUV images provided by SWAP.

LYRA Occultation Composition and Cross-sections

- LYRA measurements are from ~150-450 km.
 - Mostly O on the top-side.
 - Mostly N₂ on the bottomside.

LYRA Occultation Composition and Cross-sections

- LYRA measurements are from ~150-450 km.
 - Mostly O on the top-side.
 - Mostly N₂ on the bottomside.
- O and N₂ cross-sections very similar over Zr channel response.
- Can't distinguish N₂ from
 O with Zr channel alone.
- → Can accurately measure N₂ + O sum

Measurement Error

- Measurement uncertainty can result from instrument noise, solar variability, retrieval algorithms, cross-section assumptions; uncertainty in: solar spectrum, response function.
- MC analysis used to estimate error using MSIS atmospheres as ground truth input into instrument model.
 - Systematic component~5-10%
 - Random component~5-10%

Occultation Seasons and Latitudes

- Sun synchronous orbit results in
 - Occultations only occurring during northern winter.
 - the lower latitude atmosphere occulting line-of-sight at higher altitudes.
- Important for interpreting scale-height temperatures.
 - Denser topside due to horizontal motion will result in hotter scale heights.

2010-2011 and 2013-2014 Campaigns

2010-2011

2013-2014

Dawn

0-103 nm EUV

Dusk

EUV Temperature Sensitivity vs Altitude

- Lower and middle thermosphere temperature highly correlated with EUV irradiance.
- · At higher altitudes, correlation breaks down.
 - EUV heating expected to be less significant at high altitudes.
 - At high altitudes, thermal e⁻ are major contributors to neutral heating.

– e⁻ density hard to predict → high alt. neutral temperature hard to

predict.

P.G. Richards Can. J. Phys 90 (2012)

Future LYRA Data Products

- Current LYRA data product is the sum of O and N₂ neutral density.
- Thermospheric temperature can be derived if some assumptions are made about abundance.
 - Assume topside is pure O.
 - Bottomside is dominated by N2.
- Use series of exponential atmosphere profiles to determine abundance.
- Preliminary results are in excellent agreement with MSIS.

Summary

- LYRA solar occultations measure N₂+O number density at both dawn and dusk terminators.
 - Thiemann, E. M. B., Dominique, M., Pilinski, M. D., & Eparvier, F. G. (2017). Vertical thermospheric density profiles from EUV solar Occultations made by PROBA2 LYRA for solar cycle 24. Space Weather, 15
- Measurements are made during PROBA2 eclipse season, ~November-February.
- Measurements were made at daily cadence from 2010-2017.
- Measurements at orbit cadence began in Fall 2017.
- Thermospheric density profiles are rare and unique, and the LYRA data should be useful for a range of studies; e.g.:
 - Thermospheric variability over a solar cycle and solar rotations.
 - Space weather event case studies.
 - Wave/tidal forcing studies.
 - Sudden stratospheric warming case studies.
 - Data assimilation studies.
- Methods have been developed to derive thermospheric temperature, expect paper/data to be submitted/published late 2018.

Backup Slides

Click to add image credit info

Accounting for the Extended Sun

- Red line of sight goes through thinner atmosphere than green line of sight.
- Forward model can't identify just one constant column density.
- What to do?

Accounting for the Extended Sun

- Roble and Norton [1972] showed that using a simple isothermal atmosphere to integrate the solar disk over when finding the column densities was sufficient above the first scale height change.
- Key is to keep H constant while adjusting n₀.
- Iterate until H of retrieved density equals H of the reference model.

Accounting for the Messy Corona

- 0.1-20 nm radiance is highly variable over the solar disk, and must be accounted for to avoid introducing error.
 - E.g. a bright active region along denser (tenuous) lines of sight will be more (less) readily absorbed.
- Serendipitously, PROBA2 has the SWAP imager to estimate the radiance distribution.

Contact LASP

- 1234 Innovation Drive, Boulder, CO 80303
- 303-492-6412
- http://lasp.colorado.edu
- info@lasp.colorado.edu

