Investigation of the middle corona with SWAP and a data-driven non-potential coronal field model

GI: Karen Meyer, Abertay University (Dundee), Collaborator: Professor Duncan Mackay, University of St Andrews

Non-linear force-free field model for corona

Model corona out to 2.5 solar radii

Flux transport model for evolving photosphere

Bipole parameters determined from observations

Flux Transport Model

Initial condition: PFSS source surface based on synoptic magnetogram (e.g. Kitt Peak, SOLIS)

Evolution: - Differential Rotation

- Meridional Flow

- Surface Diffusion

New bipoles: Properties (e.g. flux, tilt, location) determined from subsequent synoptic magnetograms

Lower boundary condition for coronal model

Smoothed observed synoptic magnetograms

Magnetofrictional Coronal Model

Coronal field induction equation:

$$\frac{\partial \mathbf{A}_0}{\partial t} = \mathbf{v}_0 \times \mathbf{B}_0 - \mathbf{E}_0,$$

$$\mathbf{E}_0 = -\frac{\mathbf{B}_0}{B_0^2} \nabla \cdot \left(\eta_4 B_0^2 \nabla \alpha_0 \right),$$

$$\alpha_0 = \frac{\mathbf{B}_0 \cdot \mathbf{j}_0}{B_0^2}$$

$$\mathbf{E}_0 = -\frac{\mathbf{B}_0}{B_0^2} \nabla \cdot \left(\eta_4 B_0^2 \nabla \alpha_0 \right), \qquad \qquad \alpha_0 = \frac{\mathbf{B}_0 \cdot \mathbf{j}_0}{B_0^2} \qquad \qquad \mathbf{v}_0 = \frac{1}{\nu} \frac{\mathbf{j}_0 \times \mathbf{B}_0}{B_0^2} + v_{\text{out}}(r) \mathbf{e}_r.$$

Coronal field evolves through continuous series of quasi-static force-free states (jxB=0).

Alternative non-ideal term:

$$\eta (|\mathbf{j}|) = \eta_o \left(1 + c \frac{|\mathbf{j}|}{B_{max}} \right)$$

 $\eta_o = 0.1D, \quad D = 600km^2 s^{-1}, \quad c = 0.2$

Example simulation: May – Aug 1999

- Sample fieldlines plotted in plane of sky.
- For model development and applications, see e.g.

van Ballegooijen et al 2000; Mackay and van Ballegooijen 2006a,b; Yeates et al. 2007, 2008a,b, 2009a,b, 2010, 2012

Also Yeates et al. 2018

"Global Non-Potential Magnetic Models of the Solar Corona During the March 2015 Eclipse"

Initial study: March 2015 Eclipse Simulation – Comparison of Global Structure

Simulation: 1st September 2014 – 21st March 2015 (Eclipse 20th March 2015)

Filaments well reproduced (see also filament studies by Yeates et al.)

Compare global structure with SWAP mosaics and CR movies

Comparison: 2015 eclipse simulation and SWAP

Global magnetic field structure: sample fieldlines on eclipse day

Extended features: SWAP off-point image from 26th Nov 2014

> Evolving features: **SWAP CR movies**

Simulation data: 21st Nov 2014

Simulated Emission: j^2 averaged along fieldlines, summed along line of sight

HMI magnetogram

SWAP stacked image

Flux Transport Simulation + Field lines

Simulation data: 11th Dec 2014

Simulated Emission: j^2 averaged along fieldlines, summed along line of sight

HMI magnetogram

SWAP stacked image

Flux Transport Simulation + Field lines

Simulation data: 31st Dec 2014

Simulated Emission: j^2 averaged along fieldlines, summed along line of sight

HMI magnetogram

SWAP stacked image

Flux Transport Simulation + Field lines

SWAP CR stack: 2015-01-01T23:26:47 1500 1000 500 -1000-15001500 -1500-1000-500500 1000 X (arcsec)

Next: more realistic photospheric evolution – active region decay

Includes:

- Differential rotation (+ meridional circulation)
- Spot decay fragments break off
- Moat flow
- Supergranulation
- Cancellation, coalescence, fragmentation
- Interaction with surrounding smallerscale features

Effect on coronal evolution

Simulate active region evolution e.g. as it rotates out of field of view

Small-Scale "Magnetic Carpet" Model

Summary

- Comparison: 2015 eclipse simulation and SWAP data
 - Simulated emission images bright active regions
 - Flux ropes filaments
 - Global magnetic field structure
 - Evolving large-scale features CR movies
- Improving the photospheric evolution model
 - More realistic active region decay
 - Effect on coronal evolution
 - Consider off-limb structures