belspo

LYRA status update

M. Dominique, I. Dammasch, L. Wauters, T. Katsiyannis

SWT, Brussels, 27/06/2016

Instrument status

Degradation

R Status on February 15, 2016

Channel	Remaining signal	Channel	Remaining signal	Channel	Remaining signal
Unit 1		Unit 2		Unit 3	
Channel 1-1	62%	Channel 2-1	0.6%	Channel 3-1	61%
Channel 1-2	75%	Channel 2-2	0.03%	Channel 3-2	9%
Channel 1-3	100%	Channel 2-3	3%	Channel 3-3	19%
Channel 1-4	100%	Channel 2-4	30%	Channel 3-4	71%

Degradation Unit 2

Latest results

Eclipse: 2016/03/09

Eclipse: 2016/03/09

R Flare C1.3

Eclipse of 2015/03/20

Paper submitted to Space Science Reviews
Multi-instrument observations of the solar
eclipse on 20 March 2015 and its effects on
the plasmasphere and ionosphere over
Belgium and Europe

S. M. Stankov ^(1,4), N. Bergeot ^(1,2), D. Berghmans ^(1,2), D. Bolsée ^(1,3), C. Bruyninx ^(1,2), J.-M. Chevalier ^(1,2), F. Clette ^(1,2), H. De Backer ^(1,4), J. De Keyser ^(1,3), E. D'Huys ^(1,2), M. Dominique ^(1,2), J. Lemaire ^(1,3), J. Magdalenić ^(1,2), C. Marqué ^(1,2), N. Pereira ^(1,3), V. Pierrard ^(1,3), D. Sapundjiev ^(1,4), D. B. Seaton ^(1,2), K. Stegen ^(1,2), R. Van der Linden ^(1,2), T. G. W. Verhulst ^(1,4), M. J. West ^(1,2)

Flare detection and analysis

- Development of an enhanced algorithm to detect flares in solar timeseries
- Creation of a LYRA flare list
- Analysis of the impact of the detection criteria on the detected flare population

Flares detection and analysis

R Paper accepted in A&A

The Effects of Flare Definitions on the Statistics of Derived Flare Distributions

D. F. Ryan^{1,2}, M. Dominique¹, D. Seaton^{1,3,4}, K. Stegen¹, and A. White⁵

- ¹ Solar-Terrestrial Center of Excellence, SIDC, Royal Observatory of Belgium, Brussels, Belgium
- ² NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- ³ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- ⁴ NOAA National Centers for Environmental Information, Boulder, Colorado, USA
- ⁵ School of Computer Science and Statistics, Trinity College Dublin, O'Reilly Institute, Dublin 2, Ireland

LYRA mid-term periodicities

R Paper accepted in Solar Physics

Two joint flare campaigns with IRIS: A few C flares detected

∞ 2015/10/14 04:00 till 2015/10/20 04:00

∞ 2016/03/15 00:00 till 2016/03/21 00:00

In brief ...

- Mission currently founded till end 2016, extension confirmed till 2018, request for two more years ongoing
- Currently running our seventh Guest Investigator Programme
- New dark current correction: the reprocessed data are now on-line !!!

New data products

CR Lyra Rescaled : one-minute Lyra timeseries rescaled to match GOES scale

CR Lyra Background : daily EUV background extracted from LYRA data

R Lyra-based flare list

All can be obtained on http://proba2.oma.be

ROB/SIDC, Brussels, Belgium

LYRA highlights

- 3 instrument units (redundancy)
- \propto 3 types of detectors,
 - Silicon + 2 types of
 - diamond detectors (MSM, PIN):
 - radiation resistant
 - insensitive to visible light
 - compared to Si detectors
- R High acquisition cadence up to 100 Hz (nominal 20Hz)

The LYRA channels

Degradation Unit 1

Degradation Unit 3

