How using the spectral response of instruments in flaring conditions affects the modelling of the impact of flares on the ionization rate in the ionospheric D-region

V. Žigman, UNG, Nova Gorica, Slovenia

M. Dominique, STCE/ROB, Brussels, Belgium

Objectives

O To assess the impact of solar flares on the lower ionosphere: 50-100 Km height

O Mean:

- o combine space-based irradiance measurements and Earth-VLF transmission
- o understand how the response of the various instruments affect the measurements
- compare our estimation of electron density to models (LWPC from Naval Ocean System Center)

Radiowave propagation

(Supported by NOSC LWPC)

D region (50-100 km):

- o reflects radio waves with frequencies < 30 kHz (VLF)
- o produced by lyman-α and during solar flares by the intense X-rays

Transmitter:
North-West
Cape / 19.8 kHz
(21.S,114.2 E)

Receiver:
Belgrade AbsPAL
Measures phase
and amplitude
disturbances
(44.85 N, 20.38 E)

Flare impact on radiowave propagation

R (receiver) T (transmitter) EARTH

Measured variations of phase and amplitude on the NWC-Bgd path on a quiet day 2011/02/22 and on a flare active day 2011/02/18.

Flare impact on radiowave propagation

Measured variations of phase and amplitude on the NWC-Bgd path on a quiet day 2011/02/22 and on a flare active day 2011/02/18.

www.proba2.sidc.be

Zr channel of LYRA: 1-2 + 6-20nm

lasp.colorado.edu/home/eve/

Channel 1 of EVE: 0.1-7nm

www.swpc.noaa.gov

GOES: 0.1-0.8nm

Observations of solar flares

2011/02/18 highly active day

VLF observability of flares needs a sunlit signal path

M6.6_1011 UT

M1.4_1303 UT

In correlation with VLF observations from Earth

Observations of solar flares

Observations of solar flares

 $\Delta t > 0$

Time delay (Appleton, 1953, Journal of Atm.

Terrestrial Physics *JATP*, 3, 282) "sluggishness" (time shift of maximum N with respect to regular diurnal flux at χ =0)

$$I(A_{\text{max}}) \equiv I(N_{\text{max}})$$

$$\Delta t_{A,P} = t_{A,P_{\text{max}}} - t_{I_{\text{max}}} = t(N_{\text{max}}) - t(I_{\text{max}})$$

2011/02/18 10:11 UT M6.6

	Δt_{A} (min)	Δt_{P} (min)
ESP	1	2
LYRA	1	2
GOES	2	3

Modelling the induced electron density enhancement

$$\frac{dN(t)}{dt} = q(t) - \alpha N^2(t)$$

With
$$q(t) = kI(t)\cos(\chi)$$

- N = electron density
- \circ q = electron production rate
- α = effective electron recombination coefficient
- χ = solar zenith angle
- = number of e-i pairs produced per unit energy per unit path length

Determination of α

Time delay, Appleton relation, but for the active ionosphere:

$$N(I_{\text{max}}) = \frac{1}{2\alpha \Delta t} \qquad N_{\text{max}} \approx N(I_{\text{max}}) + \frac{\partial N}{\partial t} \Big|_{I_{\text{max}}} \Delta t \qquad (1)$$

$$\frac{dN(t)}{dt} = q - \alpha N^2 \longrightarrow N_{\text{max}} = \sqrt{\frac{kI(N_{\text{max}})\cos\chi}{\alpha}} \qquad (2)$$

Agreement of (1) and (2) yields: $k\alpha \cos \chi = const.$

$$k\alpha\cos\chi=const.$$

Determination of q

$$q(t) = k(h)I(t)$$

I can be measured => q and k pertains to the bandpass of the instrument

Measurements: only available for limited time periods

- ⇒ use of several instruments
- ⇒ comparison of several bandpasses

If we know k(h), we know α and q(t)

Determination of q

- Traditionally, I is measured by GOES (narrow bandpass)
- Other instruments with larger bandpasses can be used as well, if we have an idea of the spectral behavior of k and the solar irradiance over the bandpass
 - => we estimate the ionization efficiency over the bandpass of the instrument by λ_2

$$k(h) = \frac{\int_{\lambda_1}^{\lambda_2} k_{\lambda}(\lambda, h) I_{\lambda}^{(Ch)}(\lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} I_{\lambda}^{(Ch)} d\lambda}$$

where $I_{\lambda}^{(Ch)}$ is the CHIANTI modeled spectral irradiance at flare conditions and λ_1 and λ_2 determine the relevant wavelength domain.

Spectral irradiance

• We used the default flare spectrum from CHIANTI

Severe changes in the spectral irradiance wavelength dependence for quiet and flare conditions

Determination of k

LIE [1/cm] - the number of electron ion pairs per one photon per unit length.

Journal of the Radio Research Laboratories, 13, no 70, 245-261

LIE estimated over the altitude range 30-300 km and for wavelength from 0.01 to 137.5nm.

Results

Height distribution of ionization coefficient k

Results: flare M6.6 18/02/2011

Height distribution of flare induced maximum electron density N_{max}

THANK YOU!!!

- O To the PROBA2 Guest Investigator Programme
- To G. DelZanna and the CHIANTI team
- To the STCE/ROB
- O To UNG

And the courageous audience attending the first talk of the morning!!!!