

Two studies with LYRA:

- + Ly- α flare observations
- Long-term trend

Matthieu Kretzschmar

Royal Observatory of Belgium LPC2E, France

Two studies with LYRA:

- ♦ Ly-α flare observations
 (Submitted to Solar Physics)
- Long-term trend
 (Submitted to SWSC)

Matthieu Kretzschmar

Royal Observatory of Belgium LPC2E, France

Two studies with LYRA:

- + Ly-α flare observations
- ◆ Long-term trend

Matthieu Kretzschmar

Royal Observatory of Belgium LPC2E, France

Lyman- α flare

- ✓ Very few observations: instrumental or solar?
- ✓ Only two* in Sun-as-a-star measurements (Brekke et al., 1996; Woods et al., 2004)
- ✓ But most intense line of the solar spectrum! Relevant for flare physics and Solar-Terrestrial physics

* Now 3: Milligan et al., 2012

Lyman- α flares seen by LYRA

Table 1. Flares with a signature in Lyman- α observed by LYRA

Date	SXR class	Unit	NOAA region	Quality
SOL2010-01-20T10:59	M1.8	2	1041	medium (detector not stabilized)
				`
SOL2010-02-06T07:04	C4.0	2	1045	good
SOL2010-02-06T18:59	M2.9	2	1045	medium (pointing manoeuvre)
SOL2010-02-07T04:52	C9.9	2	1045	medium (pointing manoeuvre)
SOL2010-02-07T21:15	C4.2	2	1045	good
SOL2010-02-08T03:58	C2.4	2	1045	medium (pointing manoeuvre)
SOL2010-02-08T06:06	C6.8	2	1045	medium (pointing manoeuvre)
SOL2010-02-08T13:47	M2.0	2	1045	good
SOL2010-02-08T21:23	M1.0	2	1045	medium (faint, occultation)
SOL2011-05-29T21:20	C8.7	3	1227	medium (pointing manoeuvre)
SOL2011-09-08T15:46	M6.7	3	1283	medium (pointing manoeuvre)

- √ Observations early in the mission because of degradation (but see unit 3)
- ✓ Most of the flares occurred in the same AR

Lyman-\alpha flares seen by LYRA

Table 1. Flares with a signature in Lyman- α observed by LYRA

Date	SXR class	Unit	NOAA region	Quality
SOL2010-01-20T10:59	M1.8	2	1041	medium (detector not stabilized)
SOL2010-01-20110:03 SOL2010-02-06T07:04	C4.0	2	1045	good
SOL2010-02-06T18:59	M2.9	2	1045	medium (pointing manoeuvre)
SOL2010-02-07T04:52	C9.9	2	1045	medium (pointing manoeuvre)
SOL2010-02-07T21:15	C4.2	2	1045	good
SOL2010-02-08T03:58	C2.4	2	1045	medium (pointing manoeuvre)
SOL2010-02-08T06:06	C6.8	2	1045	medium (pointing manoeuvre)
SOL2010-02-08T13:47	M2.0	2	1045	good
SOL2010-02-08T21:23	M1.0	2	1045	medium (faint, occultation)
SOL2011-05-29T21:20	C8.7	3	1227	medium (pointing manoeuvre)
SOL2011-09-08T15:46	M6.7	3	1283	medium (pointing manoeuvre)

- √ Observations early in the mission because of degradation (but see unit 3)
- ✓ Most of the flares occurred in the same AR

M2 flare on 10 Feb. 2010

- ✓ LYRA data needs additional processing for this event.
- ✓ Dark current ... x4 (!) or subtract average orbital variations.
- ✓ Correct degradation by a multiplicative factor

M2 flare on 10 Feb. 2010

- ✓ LYRA data needs additional processing for this event.
- ✓ Dark current ... x4 (!) or subtract average orbital variations.
- ✓ Correct degradation by a multiplicative factor
- ✓ Absolute calibration based on § SORCE/SOLSTICE

Context

- ✓ No modification of the AR in the photosphere/chromo/ corona
- ✓ Looks confined (very localised)- but a small type III radio burst occurred

√ Neupert effect holds.

Overall flare evolution

- ✓ Very brief impulsive phase.
- ✓ Ly- α peaks before all other wavelengths..
- √ but mostly follows the gradual phase.
- ✓ Looks well correlated with H- α at the time resolution

Chromospheric emission

- ✓ Very good agreement between Ly-α and 30.4nm (if delayed by 45s)
- ✓ Ly- α has ~ twice the emission in GOES 0.1-0.8nm.
- ✓ Radiative loss between 7 10²⁴ erg/s and 1.4 10²⁵ erg/s
- √ as observed by LYRA...

SORCE/SOLSTICE

√ How does the actual spectral range observed by LYRA influence the observed increase?

GOES/LYRA comparison

- ✓ from LYRA level2 data.
- ✓ Time profiles agree.
- ✓ but not the increase. LYRA underestimates it by a factor 10. (Radiative loss ~ 10²⁶erg/s)
- ✓ LYRA degradation that fast ?

from Marty Snow

Coronal radiative loss

Visible continuum

8-Feb-2010 13:42:16.000 UT

520
500
480
440
420
400
0 50 100 150 200 250
X (ercsecs)

- √ Visible continuum
 both in impulsive and gradual phase.
- √ Contour indicates 3% increase wrt to QS.
- ✓ Can account for a radiative loss of ~1.7
 10²⁸ erg/s

X (orcsecs)

Conclusion for this event

- ✓ Although the flare looks confined, nothing particular was noted.
- ✓ Ly- α has ~ twice the emission in GOES 0.1-0.8nm and a radiative loss between 7 10^{24} erg/s and 1.4 10^{25} erg/s. LYRA probably underestimates the Ly- α flare flux due to its large pass-bands (a factor 10 at most).
- ✓ The Ly- α emission alone is small wrt to the total energy release.
- ✓ The response to flares of the low D region of the ionosphere is not modified when flares have a Ly- α irradiance signature (Raulin, Trottet, Kretzschmar, et al., subm.)

Two studies with LYRA:

- + Ly- α flare observations
- ◆ Long-term trend

Matthieu Kretzschmar

Royal Observatory of Belgium LPC2E, France

Degradation

✓ Huge degradation in the two first channels of the nominal unit.

For the two other channels, backed up units are used to monitor the degradation (see Ingolf's talk of yesterday).

√ which is corrected by addition.

Time ofter first light / days

Other effects

- ✓ Both LYRA and PROBA2 have innovative features that reflect themselves in the data.
- ✓ Diamond detectors + LARs
- √ Slow response time
- √ Reboots
- √ Eclipse and occultations
- ✓ Needed to compute daily average value.

Spectral response

√ We will use TIMED/SEE and SDO/EVE data to simulate
LYRA ch2-3 and ch2-4 and compare with our results

Ch2-4: long term

- ✓ Agrees with manual selection of daily value.
- ✓ Absolute value is good.
- √ slightly stronger trend with solar cycle for SDO/EVE
- ✓ but both degradation correction are version2 only
- ✓ Up to now, increase by a factor of 2.

Ch2-3: long term

- ✓ Agrees with manual selection of daily value.
- ✓ Absolute value is ok.
- ✓ Much larger variations with solar activity for SDO/ EVE.

✓ Use SDO/EVE to investigate the degradation of different spectral ranges.

Ch2-3: long term

- ✓ EUV contribution to ch2-3 has strongly decreased.
- √ The additive correction for degradation corrects for absolute level but not for the variability.

Confirmed by comparison with SEM.

√ Can we retrieve the EUV component of ch2-3 with LYRA only?

Modeling of the degradation of the EUV component of ch2-3

0.0005

0.0010

0.0015

Ch.4 irradiance [W/m²]

0.0020

0.0025

- √ The difference between channel3 and channel4 matches the EUV component of ch3
 - → The difference between the non corrected ch3 and the corrected ch4 leads to an estimate of the EUV component of the uncorrected ch2-3 signal.
- √ The simulated EUV component of ch3 is very well correlated with the simulated channel4
 - Assuming ch2-4 is correctly corrected, we can estimate the undegraded EUV component of ch2-3 and retrieve the degradation curve from the ratio of the two.

Modeling of the EUV component of ch2-3

- √ This confirms that the lower variability wrt to EVE in LYRA ch2-3 is due to the loss of EUV sensitivity.
- √ This can be recover (as far as the SNR is sufficient..) by using a multiplicative correction for degradation

Conclusion

- √ We have built daily average time series for LYRA ch2-3 and ch2-4 (validated).
- ✓ Long term trend of ch2-4 agrees with SDO/EVE (within uncertainty).
- √ The EUV contribution to ch2-3 has almost disappeared... It can be retrieved (at least for the begining of the mission) using a combination of ch2-3 and ch2-4.
- √ EUV irradiance has increased by a factor ~2 up to now.

Thank you and bon appétit!