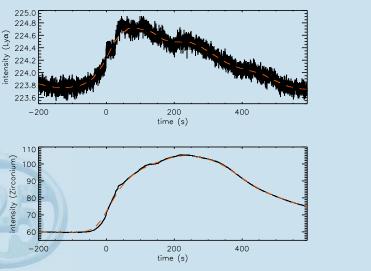
LYRA observations and seismology of two oscillation modes in a single flare

Tom Van Doorsselaere

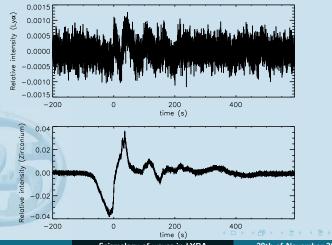

Centre for Plasma Astrophysics, Mathematics Department, K.U.Leuven

tom.vandoorsselaere@wis.kuleuven.be TVD is a postdoctoral fellow of the FWO - Vlaanderen and is funded by an Odysseus grant.

November 29, 2011

Thanks to: Anik De Groof, David Berghmans, Joe Zender, Marcel Goossens Seismology

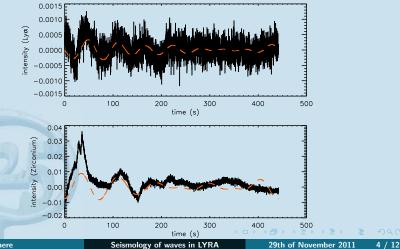
LYRA intensity data from 08 Feb 2010



2 / 12

Relative intensity

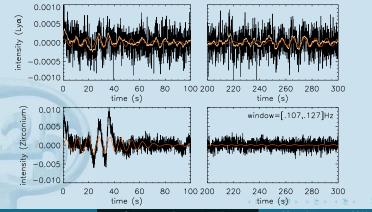
After background subtraction (dashed line in previous graph), i.e. time signal smoothed by 1500 data points (75s).


Tom Van Doorsselaere

3 / 12

Filtered signals

Spectral peak at P = 75s. Overplot filtered signal (top hat filter between 10 and 19mHz) in orange.



Tom Van Doorsselaere

Fast(er) oscillations

Smooth with 12.5s (250 data points). Oscillations with period 8.5s are found. Filter signal (top hat filter between 107 and 127mHz). Obvious match with oscillations in Ly α , but the oscillations in Zr do not persist past the maximum of the flare.

Interpretation

Our interpretation of the observed periodicities:

- Periods are from standing oscillations in a single post-flare loop
- Short period = fast sausage mode
- Long period = slow sausage mode

Additional assumptions necessary for seismology:

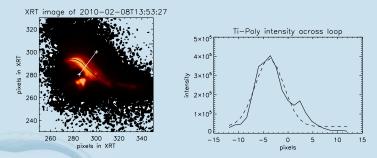
- Oscillations live in the same post-flare loop.
- Consider a cylindrical model for the post-flare loop, where density, pressure and magnetic field are constant in the internal and external region (*Edwin & Roberts, 1983*).
- Post-flare loop is in pressure balance.

Phase speed relation

Relate the phase speeds and periods of the waves through the equation:

$$n_{\rm s}V_{\rm s}P_{\rm s}=n_{\rm f}V_{\rm f}P_{\rm f}$$

(Subscript s (f) is for the slow (fast) mode. n is the number of nodes along the loop. V is the phase speed. P is the period.)


Rewrite as:

$$r = \frac{P_{\rm s}}{P_{\rm f}} = \frac{n_{\rm f}V_{\rm f}}{n_{\rm s}V_{\rm s}}$$

The observed value of r = 8.8.

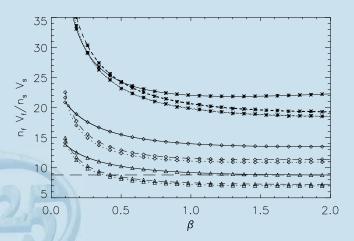
XRT observations

Aspect ratio: $(I/w)_{POS} = 4.6$

Need to calculate the phase speed numerically!

Tom Van Doorsselaere

Seismology of waves in LYRA


29th of November 2011

8 / 12

Seismology

Numerical results

Solid lines are for $n_{\rm f} = 1$, dotted for $n_{\rm f} = 2$, and dashed for $n_{\rm f} = 3$. Stars are for $n_{\rm s} = 1$, diamonds for $n_{\rm s} = 2$, and triangles for $n_{\rm s} = 3$.

Seismological results

- $n_{\rm f} V_{\rm f}$ is nearly constant.
- *n*_f only important for determining the minimum density contrast

 $(n_{\rm f} = \{1, 2, 3\} \rightarrow \{\zeta_{\min, 1} > 120, \zeta_{\min, 2} > 30, \zeta_{\min, 3} > 14\})$

- Observed value of r only reached for $n_{\rm s} \geq 3$.
- In that case, $\beta = .4$ for $n_{\rm f} = 2, 3$.

Conclusions

- LYRA observes pronounced MHD oscillations in a flare.
- Periods of 75s (throughout the flare in both channels), and 8.5s (throughout the flare in Lyα, rising phase only for Zr).
- Interpretation as slow standing mode, and fast sausage mode.
- Seismology using a basic cylindrical model for the flaring loop.
- Need (at least) 3rd harmonic of slow standing wave to reproduce the observed period ratio.
- Indications that fundamental fast sausage mode is unrealistic.
- Plasma- $\beta = .4$.

Operations

- Fast cadence needed (selling point for LYRA!)
- Noise is undesirable (cfr. Ly α)
- Large Angle Rotations: OUCH. Can we stop these?
- Systematic study?
- Combine LYRA high cadence with EVE spectral data?