# LYRA on-board PROBA2 Instrument overview M. Dominique, J.-F. Hochedez, I. Dammasch et al. **CESRA/SWT Meeting** La Roche en Ardennes, 2010



## LYRA: a large yield radiometer on-board PROBA2

#### PROBA2:

- □ an ESA micro-satellite
- □ hosting 17 technological demonstrators + 4 scientific instruments
- □ launched on November 2, 2009







- □ 4 spectral channels covering a wide emission temperature range
  - □ 200-220 nm Herzberg continuum range (interference filter)
  - □ Lyman-alpha (120-123 nm, interference filter)
  - □ Aluminium filter channel (17-80 nm) incl. He II at 30.4 nm
  - □ Zirconium filter XUV channel (1-20 nm)
- □ Redundancy (3 units) gathering three types of detectors
  - □ Rad-hard, solar-blind diamond UV sensors (PIN and MSM)
  - □ AXUV Si photodiodes

|       | Ly  | Hz  | Al  | Zr  |
|-------|-----|-----|-----|-----|
| Unit1 | MSM | PIN | MSM | Si  |
| Unit2 | MSM | PIN | MSM | MSM |
| Unit3 | Si  | PIN | Si  | Si  |

- $\square$  2 calibration LEDs per detector ( $\lambda = 465 \text{ nm}$  and 390 nm)
- □ High cadence (up to 100Hz)
- Quasi-continuous acquisition during mission lifetime



### South Atlantic Anomaly





### Collaborations































## State of the data processing pipeline













- □ Orbital temperature variations observed in dark current for channels amplified by a factor 10.
- □ Remark: Pre-flight campaign, above 40°C, the dark current increases dramatically



### South Atlantic Anomaly





- □ Perturbationsappearing around75° latitude
- □ 2-3 days after a CME, flare ...
- □ Associated to geomagnetic perturbations



# Degradation Nominal unit (#2)



## Degradation Back-up units (#1 and #3)



The signal of calibration LEDs is constant



Degradation at the filters level



## Jumps when off-pointing

When off-pointing the spacecraft, the Hz channel signal doesn't fit the modeled behavior

⇒ Imprinted degradation ???



## Occultations





- □ Lyra senses flares down to B1.5 at least
- □ LYRA list of flares is in agreement with the one of GOES
- □ Always visible in the two XUV-EUV channels
- □ Some strong and impulsive flares are also visible in Lyman-alpha, which can then be used as a precursor

# Flares

#### □ M2.0 flare 2010/02/08 - 22h33



# Flares

#### □ C3.6 flare 2010/05/04 - 16h30









### Routine activities

- □ Nominal acquisition:
  - □ Unit2
  - □ Integration time = 50 ms
- □ Calibration
  - □ Dark current
  - □ LED signal
- □ Back-up acquisition
  - □ Acquisition with units1 and 3
- □ Flat-field analysis
  - □ Off-pointing sequence
- □ Bake out decontamination
  - □ Switch on of heaters (temperature reaches 50°C)

**Nominal** 

Weekly

**Monthly** 

**Monthly** 

Once every 6 months



□ Sun-Moon eclipses

□ Stray light analysis

□ SDO/EVE cross-calibration campaign

January 15 (annular from LYRA)

March 18-19

May 3